弗尔德(上海)仪器设备有限公司
400-810-00693188
中国粉体网 认证,请放心拨打!
400-810-0069
分机号:3188
粉体网认证,请放心拨打
访问手机展位
微信小程序展位
留言咨询
(我们会第一时间联系您)
关闭
留言类型:
     
*姓名:
*电话:
*单位:
Email:
*留言内容:
(请留下您的联系方式,以便工作人员及时与您联系!)
认证信息
白金会员 第 17
名 称:弗尔德(上海)仪器设备有限公司
认 证:工商信息已核实
访问量:3796016
手机网站
扫一扫,手机访问更轻松
产品分类
公众号
该奖项旨在表彰粉体行业成立8年以内,并在粉体产业成长迅速,表现优异,为行业做出突出贡献的企业。主要指标包括新产品、新技术、企业知名度等三个方面。
技术文章
动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较

弗尔德(上海)仪器设备有限公司  2016-11-04  点击4529次

 1  2 陈沈良

  1. 华东师范大学河口海岸学国家重点实验室 上海 200062;2.德国莱驰科技 上海 201204)

 

  

筛析法是海滩沉积物粒度分析较经典和常用的方法随着科学技术的发展利用动态图像法分析沉积物粒度逐渐得到推广本文利用动态图形法和筛析法对海南岛个海滩剖面20 组沉积物样品进行粒度粒形测试并将两种方法所测得的粒度进行比较测试分析结果显示该方法的测试结果重复性好精度高通过与筛析法的对比显示动态图像法与筛析法的测试结果非常接近粒度级配曲线基本一致各个粒度参数值很接近且相关性非常好2 >0.94);由动态图像法得出的粒形参数可以看出粒径相当的不同海滩沉积物粒形参数有很大差别同一海滩不同部位的球形度和宽长比变化很大对称度和凹凸度变化稍小研究表明动态图像法与筛析法之间的粒度分析差异主要来自于两者测量原理的不同和天然海滩砂颗粒形状的不规则动态图像法解决了不规则沉积物粒度的测量因此动态图像法可以替代筛析法来测量沉积物粒度应用前景广阔

 

关键词 动态图像法 Camsizer XT 海滩沉积物 粒度参数 筛析法

 

第一作者简介    1990 年出生 硕士研究生 港口海岸及近海工程 Email: 51142601034@ ecnu.cn

 

通讯作者 陈沈良  教授 Email: slchen@ sklec.ecnu.edu.cn

 

中图分类号 P736.21 文献标识码 A

 

  由砂或砾等松散沉积物组成的海滩是砂质海岸重要的沉积地貌单元其中沉积物粒度是一个重要的沉积动力和地貌动力参数[1] 。海滩沉积物粒度参数包含沉积动力条件和沉积物运移方面的丰富信息[2] 。沉积物粒度分析是揭示海滩沉积动力和地貌演变的重要手段之一并且颗粒形态对沉积动力也有显著影响[67]我国华南特别是海南岛海滩分布广泛[8] 。海滩沉积物粒度分析对砂质海岸的沉积特征和稳定性研究具有重要的意义[9] ,也是海滩旅游开发科学管理和持续利用需要了解的一项基本参数[10] 。

沉积物粒度的分析方法很多有直接测量法筛析法沉降法图像分析法、X 射线衰减法电阻法光散射法和激光法等[1113]然而海滩沉积物通常粒度较粗现有激光粒度仪无法测试目前最常用的方法仍是筛析法近年来随着科学技术的发展德国莱驰科技(Retsch Technology)基于ISO13322 标准采用动态数字图像分析技术研发了一款新型的干湿两用多功能粒度粒形分析仪(Camsizer XT)[14] ,并开始在海岸沉积以及海洋地质领域得到应用[15] 。本文以海南岛典型海滩为例选取若干海滩沉积物样品进行测试对比分析动态图像法和筛析法在粒度曲线粒度参数的异同及其相关性从而综合评价动态图像法在海滩沉积物粒度分析中的适用性


1 测量原理及实验方法

1 筛析法

筛析法是碎屑颗粒粒径测量的一种常用方法其原理非常简单根据需要将不同筛孔直径的标准筛按孔径从小到大依次摞起盖上筛盖放在固定的振筛机上选择适当的模式及时长让其振动即实现筛分振动完成后称得每层标准筛中的颗粒质量即可求得试样以重量计的颗粒粒径分布进而得出该沉积物样品的颗粒级配的频率分布或累积分布

 

2 动态图像法

多功能粒径粒形分析仪(Camsizer XT)是德国莱驰科技公司最新一款基于ISO13322 动态数字成像技术的粒度粒形分析仪其拥有专利的双CCD 成像技术包括基准镜头(BCCD)记录大颗粒的粒度和形态信息聚焦镜头(ZCCD)记录小颗粒的粒度和形态信息两个镜头既可单独使用也可同时使用[14] ,因而能在一个很宽的粒度范围内得到具有重现性的数据结果一次进样同时测得粒度大小粒度分布球形度对称性凹凸度等颗粒综合信息

Camsizer XT 的测量过程将处理好的样品通过进样漏斗和进样槽分散然后通过振动装置将样品振入测试腔颗粒物被CCD 镜头实时快速捕捉系统将捕捉到的动态图像信息经过复杂的程序转化处理进而得出根据各种不同粒度直径定义的粒度分布曲线主要包括投影宽度(Xc)、等效球径(Xarea )、弗雷特长度(XFe)以及定向等分径(XMa)。Xc是指沿测量方向上的最大弦;Xarea是指等投影面积球形的直径;XFe是指沿一定方向测得的颗粒投影轮廓两边界平行线间的距离;XMa指的是投影面上在测量方向面积平分线的长度;Xc_min 是指沿投影面所有测量方向上的最大弦的最小值从原理上来看,Xc_min 其数值大小接近于筛分值1)。

 

 

 

3 实验方法

实验选取采自2013 12 月海南岛崖州湾莺歌海湾和洋浦湾个代表性海滩断面的20 组沉积物样品2),其中五个样品来自崖州湾的一个断面从后滨到水下部位海滩断面采样图见图3)依次编号为YZW1~YZW5,以此类推来自莺歌海湾和洋浦湾的样品分别编号为YGH1~ YGH5、YPW1~ YPWYPW6~YPW10;重复性实验的样品来自崖州湾的YZW1。测试前先对样品进行预处理[16] :用纯水浸泡清洗洗去样品中的盐份然后在烘箱中干燥8~12 h,置于干燥器中冷却至室温将同一组样品混匀后用二分器一分为二分别用于多功能粒径粒形分析仪和筛析法测量

 

 

 


  动态图像法采用德国Retsch 公司2012 年最新研制的粒度粒形分析仪使用其干法模块FALL,测量范围是1 μm~30 mm;测试时首先打开软件设置合适参数用二分器对处理好的样品进行分样然后把分好的样品放入进样漏斗中点击软件进行测量筛分法采用德国Retsch 公司生产的AS200 control 型振动筛分仪分析筛最大直径为203 mm,粒度测量范围20 μm ~ 25 mm。根据国家海洋调查规范[17] ,实验选取的筛网孔径分别是63μm、90μm、106 μm、125 μm、250 μm、315 μm、500 μm、1 000μm,将适量预处理后的样品放在套筛最上层振筛机振动15 分钟后分别称量各层筛面上的沙重

 

 

 

2 实验结果分析

2.1 Camsizer XT 粒度重复性分析

重复性是反映仪器测量精度的一个重要指标。重复性指的是使用同样的方法在正确操作下由同一操作人员在同一实验室内使用同一仪器,并在短期内对相同试样做多个单次测试,所得测试结果之间的重合程度。本文采用两种实验方案分析对比来说明此仪器的重复性:①将YZW 号样品重复测量10 次,得出结果编号为1#~10#;②取它的10 个子样(将样品充分混合,保证子样的随机性)分别用此仪器测量10 次,得出结果编号为11#~20#。分别绘制前10 组和后10 组样品的累积频率曲线,然后进行对比。

前10 组和后10 组的累积频率曲线分别如图4和图5;测量得到D10、D50、D90 三个粒度参数,平均粒径(Mz)、分选系数(σ1)、偏度(Sk1)和峰度(Kg)这4 个参数采用FolkWard 图解法公式求得[18] ,各参数见表1。Q3是体积累积分布曲线,指的是粒径小于X的颗粒体积与总体积的比值;q3 是体积密度曲线,指的是各颗粒体积与总体积的比值(q3(x) =dQ3(x)dx )。

 

   


 

图4 中10 种不同颜色的曲线分别表示同一样品重复测量10 次的结果,可以看出10 条曲线几乎完全重合;各密度曲线之间的纵向和横向差值都十分微小,基本可以忽略不计;从直方图可以看出单样每次测量在不同的粒径区间有微小的差别。图5 是分别选取10 组子样进行测量得到的曲线,各曲线的重合度较1#~10#的曲线图差,各曲线稍微要分散一些;从密度分布曲线来看最大峰值和最小峰值相差10%~15%,累积频率曲线图的最大差值在0.1%~0.2%之间。

 

 

从表1 中1#~10#可以看出:D10、D50、D90 和Mz这4 个参数10 次测量结果非常稳定,10 组数据的标准偏差很小(<0.65),D90 略大为2.15;从相对标准偏差来看,4 个参数的相对标准差都小于0.6%;由分选系数、偏度和峰度3 个统计参数来看:分选系数的变化在千分位,偏度和峰度在百分位变化,它们的相对标准偏差都小于2%,其中峰度和分选系数都只有百分之零点几的波动,这表明数据的稳定性极好,说明Camsizer XT 仪器的重复性高。由10 个子样的测量结果可以得到类似于前10 组数据的结论,但各指标数值都略有偏大。其主要原因是取样所带来的误差,二分取样不能保证样品充分均匀,也不能保证样品的总量绝对相等,并且各子样相对于样本总体也很难具有绝对的代表性,所以各子样的测量结果会有一定偏差。从上述两组测试结果来看,与仪器自身性能所带来的误差相比,取样误差更为显著,即子样的选取是影响Camsizer XT 测量精度的主要因素。

 

 

 

2.2 动态图像法与筛析法的比较

分别用动态图像法和筛析法对样品粒径进行测量,然后将得到的两组实验结果的颗粒参数、级配曲线进行分析对比。

 

2.2.1 累计频率曲线对比

对比测试共20 组样品,这里以其中4 组样品的级配曲线为例,得到筛析法和Camsizer XT 动态图像法的级配曲线(图6)。从体积级配曲线对比图可以看出,动态图像法和筛分法的级配曲线基本一致,只在拐点上下略有差别。


  两种方法测量的测量结果出现微小差别的主要原因是:

(1)累积频率曲线的横坐标表示粒径大小,曲线越靠近左边说明颗粒越细,所以由图6 可知筛分曲线的大颗粒部分在动态图像法所得曲线的左边,小颗粒在动态图像法的右边。所以筛分曲线大颗粒部分测出来的结果比动态图像法的结果偏小,小颗粒部分测得的结果较动态图像法的结果偏大。首先从筛析法本身来看,理论上通过筛孔的最大圆球体颗粒,其直径将等于筛孔直径,所以对于不规则的沉积物颗粒,只要中径小于或等于筛孔边长的粒径都能通过筛子[11] 。如果筛子孔径为a,那么筛孔沿对角线方向的长度为2a ,因此在某些特殊情况下中径或者最大宽度介于a 与2a 的颗粒也可以通过筛子。由于海滩沉积物颗粒形状并不规则,其中存在片状、扁状和尖状的大颗粒,筛分测量时这些颗粒通过筛孔的对角线掉到下一级筛子;而动态图像法所测量颗粒投影宽度Xc_min,原理上得出的结果是颗粒实际的筛分值。综上所述,由于筛析法本身的理论缺陷造成了两种测量方法的微小差异,反映在级配曲线上也就出现了图6 的情况。

(2) 筛子的合理选取也会影响筛分曲线的圆滑程度,如果筛子选取合理,筛分曲线就越接近理想的标准级配曲线;如果选取的筛子孔径和样品的粒径分配范围差别太大,就会造成级配曲线的尖点和凹点。因此,在做筛分实验时,需要通过样品的大致粒径分配来选择实验的筛子个数和目数。

 


2.2.2 粒度参数对比

粒度参数及其组合特征可用于判断沉积水动力条件及沉积环境的参考依据。沉积物研究中常用的粒度参数包括:D10、D50、D90、平均粒径、分选系数、偏度和峰度。下面分别来讨论两种测量方法的粒度参数,并进行对比。

 


筛分法和动态图像法测量的D10、D50、D90 和平均粒径的对比如图7 所示,图中的120 分别表示YZW1~ YZW5、YGH ~ YGH 和YPW- ~ YPW10。总体来看,两种方法测量的粒径值变化趋势基本一致,20 组样品的D10、D50、D90 和平均粒径的走向一致,都在7 号点处表现为最大值,5 号点处出现最小值。D50 和平均粒径两种方法的偏差很小;D10 和D90 的偏差略大一些,不过误差也都在几十微米甚至几微米范围内。由此可见,这两种方法测得的D50和平均粒径的吻合度较D10 和D90 好,图像也出现了交叉,这个结论和图6 所得到的结论一致。

  

 

 

图像法与筛析法得出的峰度、偏度和分选系数变化趋势也基本一致(图8)。两种方法得出的峰度和分选系数相差非常小,误差均在百分位和千分位之间;偏度之间的误差稍大一些,但基本也在百分位变化,少数误差大的在十分位变化,但总体都很接近,都表现为正偏。结合图7 和图8 来看峰度和偏度较大的粒径也比较大,基本上有相同的变化趋势,相对于峰度和偏度来看20 组样品的分选系数则比较稳定,大都在0.4~0.6 之间变化,这说明实验所选取得5个断面的样品颗粒的分选性比较一致。

 

 

2.2.3 粒度参数对比

对两种方法所得到的4 个粒径参数进行回归分析(图9)。D50 和平均粒径相关图的相关系数R2 都达到0.99 以上,相关性极好;D10 和D90 的相关系数分别是0.978 和0.944 1,相关性也非常好。从这4 个参数指标的接近程度来看,Camsizer XT 动态图像法和筛析法测出的粒度参数基本是完全一致的。

从图7、8、9 看来两种方法的测试结果基本一致,但也略有偏差。略有偏差的原因主要是实验样本量比较小,仪器本身的误差和操作的误差还存在较大的比重。因此在改进测量技术的基础上如果在增加测量的样本量和测量的次数,那么测量结果就更能够具有说明性。


 

2.3 粒形参数分析

球形度、对称度、宽长比和凹凸度等是颗粒的重要粒形参数,这些粒形参数的大小直接影响着颗粒沉降和流体的流动性能;因此在海滩沉积和海岸动力学研究中,对沉积物粒形资料的分析十分重要。本文使用动态图像法测量的海滩砂样的平均粒形参数见图10、11、12 和表2,表中数据来自崖州湾、莺歌海湾和洋浦湾的三个粒径大小相当的断面,在每个断面的后滨、滩肩、滩面、水边线和水下部位采表层样,分别编号为1#、2#、3#、4#和5#。

 

 

 

 

 

图10、11、12 分别示意了崖州湾、莺歌海湾和洋浦湾的粒形参数累计曲线。对比三个海湾断面的球形度、对称度、宽长比和凹凸度可以得出不同的海湾粒形参数有很大差别,间接地说明了各海湾的颗粒所受的水动力条件和岸上风化侵蚀有很大区别。对比同一断面不同岸滩部位的同一个粒形参数可以得出:后滨、滩肩、滩面、低潮线和水下部位的球形度相差最大,在同一Q3值下最大差值接近0.2,其次是宽长比,对称度和凹凸度变化范围最小。



表2 测量结果显示,崖州湾岸滩断面五个部位的球形度和宽长比的相对标准偏差都在1.75%左右;对称度和凹凸度的相对标准偏差都在0.2%附近,这相对于球形度和宽长比稳定了很多;说明了在同一岸滩断面不同部位,球形度和宽长比变化非常大,而对称度和凹凸度的变化相对较小,这个结论和颗粒形状参数累计曲线得到的结果一致。然后分析莺歌海湾和洋浦湾的数据结果也得到了类似于崖州湾的结论。

 

 

3 不同方法的优缺点和精确度分析

3.1 优缺点分析

振动筛析法是研究沉积物粒度较为经典常用的方法之一,准确率高,并一直沿用到现在,也是当今粒度分析最流行的方法之一。但筛析法也存在测量时间长、工作量大以及测量范围小等不足之处。

Camsizer XT 动态图像法测量沉积物粒度精度好、效率高,相比于筛析法具有如下优点:①提供更多的颗粒粒径定义和颗粒信息,诸如投影宽度、等效球径、弗雷特长度、球形度、对称度、凹凸度等,可以提供颗粒的三维信息;②重现性非常好;③测量范围广,精确测量范围是1 μm~30 mm,超出了筛分法的下限;④解决了不规则沉积物粒形难题,不仅得出不同的粒径值,还可得到颗粒的形状结构;⑤测量工作量小,步骤简单,测量速度快(2 min/ 样),大大提高了测量效率。

然而,动态图像法也存在其局限性,在沉积物研究中还涉及到亚微米级的极细黏土,由于受到光学技术的限制,动态图像法不能精确的进行亚微米级颗粒测量。

 

3.2 精确度和准确度分析

从方法本身来讲,筛析法是用标准筛通过振动分级来得到沉积物的粒度值,测量前的准备和测量过程中随机因素非常多,这些都有可能带来粒径的测量误差;Camsizer XT 动态图像法利用双CDD 双摄像头拍摄,用光学手段直接测量颗粒的粒径,准确度高于利用间接法获取颗粒粒径的筛析法。

由于沉积物颗粒形状不规则,如果用一个统一的粒径值来表述不规则颗粒的大小会存在很大的估计误差。筛析法是通过筛子孔径大小来估算颗粒的粒径值,它在测量微米级颗粒的沉积物粒度上具有较高的精度,这也是筛析法沿用至今的一个重要原因。但由于得出的结果只是一个估计值,并不知道具体单颗粒的粒形信息,所以在利用得到的结果来处理别的问题时准确度还是难以有很大提高。动态图像法在不规则颗粒的粒度测量上不仅解决了粒径的测量还得出了不规则颗粒的形态数据,完全可以用来替代传统的筛析法研究沉积物粒径。

动态图像法与筛析法相比,测试效率高、操作简单、参数多而且精度高,具有更强的优势。当然,不同方法测量的结果也是存在有差异的[20] 。通过多次实验测量比较,Camsizer XT 动态图像法在测量粒度粒形上优于筛析法。然而,在众多可选择的粒度分析方法和仪器面前,最重要的是要了解它们的缺陷和不足,以便合理使用、分析其测试结果[11] 。

 

 

4 结论

通过实验研究,分析讨论了动态图像法与筛析法测量海滩沉积物粒度的结果,并对二者进行了图形对比、参数对比和相关分析。结论如下:

(1) 多功能粒径粒形分析仪(Camsizer XT)的测试结果重复性非常好,测量精度高;影响测量精确度的最主要的因素是子样的选取。

(2) 动态图像法和筛析法测量结果基本一致,从频率曲线、粒度参数,以及两者测量结果的相关性来看,动态图像法完全可以替代筛析法测量。

(3) 动态图像法具有准确度高、效率高、参数多,而且操作简单的优点,与传统的筛析法相比具有绝对的优势。

(4) 天然沉积物颗粒形状不规则是影响筛析法测试结果的主要因素,动态图像法解决了不规则颗粒的测量问题,通过多个参数的测量结果来描述沉积物颗粒的三维信息;动态图像法将不规则颗粒的测量推向一个新的阶段。因此,对于微米级沉积物颗粒的测量,动态图像法可以完全代替筛析法。

(5) 粒径范围相当的岸滩断面沙粒,粒形参数差别比较大,同一岸滩断面的不同部位粒形参数也有差别。

 

鉴于这次实验所取样品平均粒径都是在百微米级以上,仅仅代表了较粗颗粒使用动态图像法的精确性和便利性。因此,进一步的研究工作有待开展,包括对动态图像法的其他参数进行研究,并且讨论这些参数的实际意义;对微米级以及亚微米级的颗粒进行测量论证,探讨动态图像法的实验量程;研究动态图像法和激光粒度仪的对比以及两种方法的优缺点分析和适用性分析;利用动态图像法得到的粒形数据对岸滩的沉积动力及岸滩演变进行分析,解决科学问题。

 

联系电话
关闭
虚拟号将在180秒后失效,请在有效期内拨打
为了保证隐私安全,平台已启用虚拟电话,请放心拨打.(暂不支持短信)
使用微信扫码拨号
是否已沟通完成
您还可以选择留下联系电话,等待商家与您联系
*需求描述:
*单位名称:
*联系人:
*联系电话:
Email:
(请留下您的联系方式,以便工作人员及时与您联系!)